Search results

Search for "electromagnetic field enhancement" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • large contrast in the optical forces generated with these resonances is attributed to a higher electromagnetic field enhancement provided by the quasi-BIC. These results suggest that the quasi-BIC resonance is preferred when one employs all-dielectric nanostructure arrays for the trapping and
  • electromagnetic field enhancement. We should note that all these values in Table 1 are rough numbers with no optimization (e.g., the Q-factor of the quasi-BIC resonance can be controlled by the level of symmetry breaking (the size and position of the elliptical slot)). However, the results in Table 1 with
PDF
Album
Full Research Paper
Published 02 Jun 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • superior properties will provide a new platform for efficient light–matter interactions. Keywords: guided modes; light–matter interactions; photonic crystal slab; Introduction Photonic resonances with the possibility of free-space excitation (i.e., leaky modes) and large local electromagnetic field
  • enhancement are central for the manipulation of light–matter interactions. Optical resonators of various forms have been exploited for this purpose. What follows are a few representative examples investigated in the last several decades: Photonic crystal cavities are realized when small disorders or defects
PDF
Album
Full Research Paper
Published 06 Mar 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • than 3 nm) to the surface experience the electromagnetic field [2]. Moreover, the chemical enhancement occurs at an even shorter effective distance range since the molecules have to bond to the metal surface. Therefore, even though high electromagnetic field enhancement can be achieved using SERS, the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • electromagnetic field enhancement, which we then relate to the morphological changes of our SERS substrates. The SEM images and the respective Raman investigations of the SERS substrates after treatment with different solutions are presented in Figures 3–5. Table 1 summarizes the determined key properties of the
  • alterations of the electromagnetic field enhancement can be induced – either by changing the particle coverage or by inducing chemical changes of the silver nanoparticle substrates. Conclusion We demonstrated the effect of different organic solvents, biological buffer systems, and water on the performance of
  • to batch. (b) SERS spectra obtained on the individual SERS substrates of a monolayer of 4-ATP self-assembled on the treated substrates. (c) Error analysis of the 1078 cm−1 marker peak which is only influenced by the electromagnetic field enhancement mechanism [29]. The red dotted line marks the Raman
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021
Graphical Abstract
  • allows the generation of Raman scattering signals as intense as that of fluorescent compounds and, in fact, can be exploited for Raman labelling [13][14][15][16][17]. A SERS tag is typically composed of a plasmonic nanostructure capable of large electromagnetic field enhancement, coated with organic
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • cheap, reliable, reproducible and efficient SERS substrates. The SERS effect is generally assumed to mainly originate in the electromagnetic field enhancement caused by a localized surface plasmon excitation in nanostructures through the incident laser light. With respect to the substrate. It depends on
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • violet (CV) with a limit of detection (LOD) of 10−11 M. The 3D finite-difference time-domain (3D-FDTD) simulation results suggest that the simulated electromagnetic field enhancement of Ag-G.b.-20 is close to the experimental value. Meanwhile, the Ag-G.b.-20 nanohybrids exhibited good stability and
  • localized in the narrow nanogaps where the electromagnetic field enhancement occurs. Long-term stability and SERS reproducibility of the Ag-G.b.-20 SERS substrates In addition to high SERS enhancement and sensitivity, long-term stability is another important parameter for an ideal SERS substrate. Therefore
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • wide range of field enhancements, provide a way to determine relative contributions of chemical and electromagnetic field-enhancement in SERS measurements of benzenethiol. We find a chemical enhancement of 2 to 14 for different vibrational resonances when referencing against a vibrational mode that
  • range of Raman modes studied, we can neglect spectral variations of the electromagnetic field enhancement, e.g., due to plasmonic effects, and assume that the electromagnetic enhancement is the same for all modes. The relative enhancement will then reflect the variations of CE for the different modes
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • electromagnetic field enhancement and confinement. This ratio, taken as a measure of the performance of an antenna, can even exceed that exhibited by trimer AuNP antennas composed of comparable building blocks with larger gap sizes. Fluctuations in the far-field and near-field properties are observed, which are
  • likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs. Keywords: atomistic plasmonics; dumbbell dimer antennas; electromagnetic field enhancement; light confinement; nanolens; nanoscale morphology; Introduction The introduction of the
  • non-linear responses generated in these structures [39]. In addition, the asymmetry induces a cascade of the electromagnetic field enhancement towards the pointed end of the structure such that these structures are often discussed in terms of acting as a nanolens [10][40][41][42][43]. Although the
PDF
Album
Full Research Paper
Published 17 Aug 2018

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • sources. The antenna excitation and signal acquisition were carried out through a 100× objective at normal incidence in reflection configuration. Conclusion In this work we demonstrated that engineered hollow plasmonic nanostructures can provide efficient electromagnetic field enhancement over a broadband
PDF
Album
Full Research Paper
Published 18 Feb 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • -field intensities |E|2 refer to the plane parallel to substrate surface and distanced by R from it. Magnitude of the electromagnetic field enhancement is related to the electric field strength of the incident light (E = 1 V/m) which is illuminating the surface orthogonally. Distributions obtained under
PDF
Album
Review
Published 13 Nov 2014

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Balati Kuerbanjiang,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • electromagnetic field enhancement in the vicinity of well-defined nanoantennas. The results show that the presence of the nanoparticle layer can modify the field enhancement significantly. In addition, we find that the fluorescent intensities observed in the experiments are affected by agglomeration of the
PDF
Album
Full Research Paper
Published 14 May 2013

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • for large particle sizes above 0.5 µm. These special nanostructures, composed of different intertwined plates, show sharp and spiky features, thus comprising areas which are characterized by a strong electromagnetic-field enhancement due to the interaction of light with plasmonically active structures
PDF
Album
Full Research Paper
Published 18 May 2012

Distinction of nucleobases – a tip-enhanced Raman approach

  • Regina Treffer,
  • Xiumei Lin,
  • Elena Bailo,
  • Tanja Deckert-Gaudig and
  • Volker Deckert

Beilstein J. Nanotechnol. 2011, 2, 628–637, doi:10.3762/bjnano.2.66

Graphical Abstract
  • the respective nucleobases is possible, and this eventually led to successful TERS measurements on a single RNA strand of a cytosine homopolymer [19]. The dependency of the electromagnetic field enhancement of TERS on the composition of the substrate, amongst other parameters, was shown in three
PDF
Album
Full Research Paper
Published 23 Sep 2011

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • electromagnetic field enhancement, so normal fluorescence should be detectable. In order to test the simultaneous application of fluorescence readout and SERS measurements on one common biochip platform, a DNA detection scheme based on the usage of a well-known fluorescence dye label (cyanine dye Cy3.5) was
  • complementary case. Thus the established biochip is an appropriate tool for sequence specific SERS investigation and application to DNA analytics. Due to the strong electromagnetic field enhancement, the fluorescence intensity of chromophores can also be enhanced in close vicinity to the metallic nanoparticles
  • the area of free quartz surface per unit cell (Figure 4B). The lower the density of gold per unit cell, the higher the fluorescence intensity should be. Furthermore, the fluorescence enhancement is locally confined to nanosized areas with strong electromagnetic field enhancement, which correspond to
PDF
Album
Letter
Published 30 Aug 2011
Other Beilstein-Institut Open Science Activities